JEONGEUN(JE) LEE

jeongeun3.24lee@gmail.com | La Jolla, CA | linkedin.com/in/jeongeun-je-lee-a0b103233

EDUCATION

University of California San Diego, San Diego, USA

Master of Science in Computer Science and Engineering (Robotics / AI focus)

Expected Mar 2026

GPA: 3.9/4.0

TECHNICAL SKILLS

- Core Skills: Localization & Mapping (SLAM) · Path planning · Kalman / state estimation · Real-robot deployment · Computer Vision (detectio, classification, OCR) · Multimodal foundation models · LLM applications
- Software Engineering: $ROS2 \cdot Python \cdot C \cdot C++ \cdot Linux \cdot Unix Shell \cdot Git \cdot Conda \cdot Docker$

RESEARCH EXPERIENCE

University of California San Diego, USA

• Autonomous Vehicle Lab, Student Researcher

Oct 2025 - Present

- Research project for coordinated aerial—ground search-and-rescue in unknown environments using an autonomous golf cart + drone; integrating vision, global planning, and closed-loop control in ROS2.
- Color Cube tracking with Robot Arm, Co-op (Henrik I Christensen and Qualcomm) Feb 2025 May 2025

 ROS 2 + DDS + YOLO on Qualcomm RB3: built color-cube detection and DofBot control with a language-to-action layer translating text prompts into autonomous pick-and-place.
- <u>Professor Pengtao Xie's Lab</u>, Student Researcher

Sep 2024 – Mar 2025

Built an LLM-based biosequence analysis stack by combining DNABERT with ProteinChat (protein transformer ESM + Llama LLM); explored embedding pooling and cross-modal fusion.

Chung-Ang University, Seoul, Korea

Dec 2018 – Dec 2019

• <u>Systems and Storage Lab</u>, Student Researcher: Optimized EXT4 defragmentation with multi-threading; co-authored papers and filed a patent on flash-based SSD defragmentation.

PROFESSIONAL EXPERIENCE

Brain Corp Inc, San Diego, CA, USA

Jun 2025 – Sep 2025

AI Intern, Applied ML

- Led design and POC of an LLM-powered pre-review agent for scan-robot price-tag QA, achieving 12.86× faster processing and 12.57× lower cost/image; applied systematic prompt strategies, identified industrial LLM limits on noisy retail imagery, and integrated PaddleOCR for robust text extraction.
- Built a hybrid LLM-CNN pipeline to improve on-robot perception reliability for price-tag reads; boosted downstream QA accuracy and latency on edge-captured frames from the scanning platform.

Uniquify Inc, Santa Clara, CA, USA

Feb 2021 – Jul 2024

AI Engineer, AI Algorithm Task Team | Mar 2022 - Jul 2024

- Improved ResNet50 training method by using Mirrored Strategy to enable synchronous distributed training across multiple GPUs on a single machine; achieved a > 2x speed up with 3 RTX 2080 GPUs compared with single GPU
- Proposed evaluation methods for neural network models using Explainable AI (XAI), Class Activation Mapping (CAM), for thorough analysis; achieved an average 15% improvement in accuracy for defect detection project
- Led a team of 10 in an agile process to develop an efficient image processing pipeline using Adaptive Gamma
 Correction, Contrast-Limited Adaptive Histogram Equalization, Unsharp Masking, and Gaussian Filter; increased
 YOLOv8 mAP from <10% to 76% in transformed MS COCO dataset; significant improvements for dark images

AI Intern, AI Algorithm Task Team | Feb 2021 - Mar 2022

- Implemented in-house HNSW ANN search with clean APIs and scalable memory controls, achieving 1.2× higher accuracy vs. ANNOY/NMSLIB on internal data.
- Automated model-decomposition tooling for hardware handoff (layer ops, tensor shapes), reducing weekly manual effort by 4+ hours for researchers.

Irvine Tech Hub, Irvine, CA, USA

Jan 2021 – Feb 2021

AI Engineering Intern

• Built an "attention gauge" (RetinaNet) to detect facial angles/eye types; improved mAP to 51% on limited data using discriminative layer training, LR finder, and heavy augmentation.

ACHIEVEMENTS & PUBLICATIONS

• Second author, "<u>Towards LLM-Centric Multimodal Fusion: A Survey on Integration Strategies and Techniques</u>" a survey of 125 MLLMs covering integration architecture/levels, representation learning, and training paradigms